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Abstract

Recently, an interesting class of the direct gauge mediation supersymmetry (SUSY)
breaking models are proposed, in which the minimum of the potential of the SUSY
breaking field is determined by the inverted hierarchy mechanism. We consider their
cosmological implications. In this class of models, SUSY breaking field has a very flat
potential, which may have a cosmological importance. Assuming the initial amplitude
of the SUSY breaking field to be of the order of the Planck scale, it can be a source
of a large entropy production. A special attention is paid to the cosmological moduli
problem, and we will see the cosmological mass density of the moduli field can be
significantly reduced.
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1 Introduction

Low energy supersymmetry (SUSY) has been regarded as one of the attractive new physics
beyond the standard model, since it may provide a natural explanation to the stability of
the electroweak scale against radiative corrections. However, contrary to our theoretical
interests, any superpartner of the standard model particle has not discovered yet, and hence
SUSY has to be broken in nature. Unfortunately, we do not have a clear picture of the SUSY
breaking in nature, and the understanding of the origin of the SUSY breaking is one of the
most important issues in the study of the supersymmetric models.

In recent years, a new framework for the SUSY breaking, i.e., gauge mediated SUSY
breaking (GMSB) [1], has been attracting many interests, and its phenomenological impli-
cations have been extensively investigated [2]. In particular, in GMSB, SUSY breaking in
the SUSY standard model (SSM) sector is mediated by the gauge interactions which do not
distinguish flavors. In this scheme, dangerous off-diagonal elements in the sfermion mass
matrices are suppressed, and serious SUSY flavor changing neutral current (FCNC) problem
can be evaded.

In spite of the phenomenological interests, however, cosmology of GMSB is not fully
satisfactory. In particular, relic abundances of the gravitino [3, 4] and the moduli field [5]
have been known to be problematic. These problems are often called “gravitino problem”
and “cosmological moduli problem.” In some sense, they are more serious than the gravity
mediated SUSY breaking case, and they may be crucial weak points of GMSB. (These issues
will be reviewed in the next section.) However, one should note that there are rooms to
solve or improve these difficulties; since these difficulties are based on a kind of “minimal”
assumption, some of them may be solved or relaxed by a new idea. For example, thermal
inflation [6] is proposed to dilute the unwanted particles.

In this paper, we would like to propose a new mechanism for a large entropy production,
which can be a resolution to the cosmological problems in GMSB. Our scenario is based
on a class of models with direct gauge mediation in which the messenger particles have a
direct coupling to the original SUSY breaking field. In particular, recently, several direct
gauge mediation models are proposed in which SUSY breaking field has exactly flat potential
at the tree level [7, 8, 9, 10]. (For other classes of models of direct gauge mediation, see
Refs. [11, 12].) In this class of models, minimum of the potential of the SUSY breaking
field is determined by the inverted hierarchy mechanism [13], and SUSY breaking field has
a very flat potential even after the potential is lifted. In this case, SUSY breaking field may
play an important role to dilute unwanted particles; with an assumption that the SUSY
breaking field has an initial amplitude of the order of the Planck scale, various cosmological
problems can be naturally solved. One virtue of this scenario is that the source of the large
entropy production is already in the framework of the SUSY breaking mechanism. Therefore,
the scenario is fairly economical, and we do not have to introduce any new field only for
the entropy production (like “flaton”), contrary to the case of thermal inflation [6]. In the
following sections, we see how this works, and consider if we may have a cosmologically
consistent scenario.
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The organization of this paper is as follows. In Section 2, we give an overview of the
cosmological difficulties in GMSB. Then, in Section 3, we briefly review the important aspects
of the direct gauge mediation model with the inverted hierarchy mechanism. In particular,
the SUSY breaking field plays a very important role in our discussion, so we see the properties
of the potential of the SUSY breaking field in some detail. In Section 4, cosmology based
on the direct gauge mediation model with the inverted hierarchy mechanism is discussed. In
particular, we concentrate on the cosmological evolution of the SUSY breaking field, and we
discuss how it improves the cosmological difficulties. Section 5 is devoted to discussion.

2 Overview of the Cosmology of GMSB

Before discussing the cosmology of the direct gauge mediation model, let us first briefly
overview the cosmology of the gauge mediation model.

Cosmologically, one important outcome of the GMSB is the light gravitino; the gravitino
mass m3/2 in this scheme has to be much lighter than the SSM scale mSSM. This is because
mass squared matrices of sfermions have off-diagonal elements of O(m2

3/2). If this effect is
comparable to the dominant contribution from GMSB, dangerous SUSY FCNC problem
arises again, which spoils the important motivation of GMSB. Consequently, the gravitino
becomes the lightest superparticle (LSP) in this scenario.

Keeping this feature in mind, one of the most famous cosmological constraint in GMSB
is from the mass density of the gravitino in the Universe. If the gravitino is thermalized
in the early Universe, and if it is not diluted, its mass density may significantly contribute
to the energy density of the Universe. Without dilution, mass density of the gravitino is
proportional to m3/2, and the Universe is overclosed if the gravitino mass is heavier than
about 1 keV [3].

With an enough entropy production after the decoupling of the gravitino from the ther-
mal bath, gravitino mass heavier than 1 keV may be also viable. However, even in this
case, the gravitinos are produced in the thermal bath due to scattering and decay processes.
These secondary gravitinos also contribute to the mass density of the Universe, and hence
gravitino production after the entropy production has to be inefficient. Since the gravitino
production is more effective for higher temperature, we obtain an upper bound on the max-
imal temperature of the Universe after the late entropy production in order not to overclose
the Universe [4]. Notice that the interaction of the longitudinal gravitino with matter is
proportional to m−1

3/2, and hence the constraint becomes weaker for a heavier gravitino. In
Fig. 1, we show the upper bound on the maximal temperature Tmax as a function of the grav-
itino mass; the upper bound is from ∼ 100 GeV to ∼ 108 GeV, for the gravitino mass 1 keV
– 1 GeV. In particular, the constraint is very strict in the case of 1 keV<∼m3/2

<∼ 100 keV,
where the gravitinos are mainly produced by the decay processes. If the Universe starts with
a temperature higher than this upper bound, the Universe is overclosed by the gravitino,
unless there is an enough entropy production below this temperature.

More serious problem arises in the framework of superstring models. In superstring
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Figure 1: Upper bound on the maximal temperature of the Universe as a function of the
gravitino mass m3/2.

models, dilaton and moduli fields (which we call “moduli” fields hereafter) exist which are
the flat directions related to symmetries in the superstring theory. Mass of the moduli
field originates to SUSY breaking effect, and is of the same order of the gravitino mass.
(Throughout this paper, we approximate the mass of the moduli field to be the gravitino
mass m3/2.) Generically, moduli field takes an initial amplitude of the order of the Planck
scale, unless our vacuum lies at or near a point of enhanced symmetry [15].#1 Then, it starts
oscillation when the expansion rate of the Universe becomes comparable to the mass of the
moduli field. Since the interactions of the moduli field are suppressed by inverse powers of
the Planck scale, moduli field lighter than about 100 MeV has a lifetime longer than the
present age of the Universe. In GMSB, this is (almost) always the case. In this case, mass
density of the moduli field becomes enormous, if there is no dilution. Assuming the radiation
dominance before the moduli field starts to move, naive calculation results in the density
parameter of the moduli field as

Ωφh
2 ∼ 6 × 1014 ×

(

g∗
100

)−1/4 ( m3/2

100 keV

)1/2
(

φ0

M∗

)2

, (2.1)

where h is the Hubble constant in units of 100 km/sec/Mpc, g∗ is the effective number of
the massless degrees of freedom when the moduli field starts to move, M∗ ≃ 2.4× 1018 GeV
is the reduced Planck scale, and φ0 is the initial amplitude of the moduli field. For example,
for m3/2 = 100 keV, the initial amplitude has to be smaller than ∼ 10−7M∗ in order not

#1However, it is difficult to construct a realistic model which has our vacuum as a symmetry enhanced
point.
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to overclose the Universe, and this is an extreme fine tuning of the initial condition. In
other words, if the initial amplitude takes the natural value (i.e., ∼ M∗), a large entropy
production is inevitable for a viable cosmological scenario.

Even if we adopt a large entropy production to dilute the gravitino and the moduli field
away, it is still non-trivial whether a consistent cosmological scenario can be obtained. If
there is a large entropy production, it also dilutes the possible baryon asymmetry generated
in the early stage of the Universe. Naively speaking, baryon number asymmetry has to be
generated after the entropy production. However, in some case, the reheating temperature
after the entropy production becomes too low for baryogenesis. In Ref. [5], it has been
pointed out that Affleck-Dine mechanism for baryogenesis [16] may be able to generate
enough baryon asymmetry even if there is a large entropy production. This topics is reviewed
later. Candidates of the cold dark matter (CDM) is another interesting issue in GMSB. In
the gravity mediated SUSY breaking scenario, the lightest neutralino [17] or sneutrino [18]
can be a promising candidate of the CDM, if it is the LSP. However, in GMSB, they cannot
be the CDM, since they can decay into gravitino and their superpartner. Several candidates
of the CDM are proposed in the framework of GMSB [19, 20], but these candidates are also
diluted by the entropy production. One interesting candidate is the coherent oscillation of
the moduli field, if its energy density is diluted enough. Therefore, it is very important to
consider the possibility to dilute the energy density of the moduli field down to Ωφ

<∼ 1.
Another class of cosmological problems are related to the structure of the scalar potential;

the scalar potential may have unwanted minimum which is deeper than the phenomenolog-
ically viable local minimum. For example, original low energy gauge mediation model may
have a color breaking minimum [21], and the models proposed in Refs. [8, 9, 10] have a SUSY
preserving true vacuum at the origin of the potential of the SUSY breaking field.#2 Usually,
the tunneling rate to the true vacuum can be so small that the transition does not happen
for the time scale of the age of the Universe. Therefore, it is phenomenologically consistent
once the SUSY breaking field is trapped in the minimum we want. However, cosmologically,
we have not understood how the SUSY breaking field is trapped in the relevant (local) min-
imum, not in the unwanted (global) one. In particular, if we assume a naive SUSY breaking
phase transition, many horizons choose the unwanted deeper minimum, and the current
horizon contains many regions which dropped into the unwanted minimum. Notice that it
is unclear whether the thermal inflation could solve this problem, even though the reheating
temperature after the thermal inflation is relatively low. This is because the current horizon
scale contains many different horizons before the thermal inflation. Therefore, even if the
SUSY breaking phase transition occurs before the thermal inflation, current horizon still
contains many regions of unwanted minimum.

Keeping these arguments in mind, it is important to develop a cosmologically consistent
scenario based on GMSB. Importantly, one should remember that above problems are usually
based on “minimal” assumption, and in particular in direct gauge mediation model, the above
arguments do not take account of a possible effect from the SUSY breaking field. In the

#2However, the structure of the potential is model-dependent, and models without unwanted minimum
may be constructed.
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following sections, we will see what happens if we include its effects.

3 Model

In this section, we first briefly review the class of models we are interested in. As we
mentioned in the introduction, we consider a cosmology of the direct gauge mediation model
in which the potential of the SUSY breaking field is stabilized by the inverted hierarchy
mechanism. In this section, we discuss the general features of such models [7, 8, 9, 10]. An
explicit example of the model is shown in Appendix A.

3.1 Framework

The model is based on the symmetry G = GS × GB × GSM. Here, GS is the strong gauge
interaction whose dynamics induces the gaugino condensation. On the other hand, GB is
introduced to stabilize the minimum of the potential of the SUSY breaking field, and GSM

is the standard SU(3)C × SU(2)L × U(1)Y gauge croup. In this framework, we introduce the
following class of chiral superfields in order to induce a desired dynamics to break SUSY:
the SUSY breaking field Σ which transforms under GB, “messengers” q+ q̄ which transform
under GB and GSM, and “strongly interacting” fields Q+ Q̄ which transform under GS and
GB. These chiral superfields have a superpotential of the form

W = yQΣQ̄Q+ yqΣq̄q. (3.1)

Notice that this superpotential has R-symmetry which is non-anomalous for GS; under this
R-symmetry, Σ has charge +2. As we will discuss later, this R-symmetry is explicitly broken
by supergravity effect.

We construct a model so that Σ has a flat direction which is parameterized by an invariant
made out of Σ. On this flat direction, GB is broken by the vacuum expectation value (VEV)
of Σ. The first requirement to the model is that, on this flat direction, all but one degrees
of freedom in Σ are eaten by Higgs mechanism. We parametrize the remaining degrees of
freedom by X.

On this flat direction, chiral superfields coupled to Σ also acquire masses. This effect
changes the β-function of GS at µ ∼ yQ〈Σ〉, since Q and Q̄ have mass of mQ ∼ yQ〈Σ〉 and
decouple at this scale. As a result, the strong scale for the theory above mQ, Λ, differs

from that after Q and Q̄ decouples, Λeff . These two quantities are related as Λ
3µGS

eff =
Λ3µGS

−µQm
µQ

Q , where µGS
and µQ are Dynkin indices for the adjoint andQ+Q̄ representations

of GS, respectively. The second requirement to the model is that these Dynkin indices
satisfy the relation µGS

= µQ, so that the linear superpotential is induced by the gaugino
condensation; below the strong scale, effective superpotential is induced by the gaugino
condensation as

Weff ∼ Λ3
eff ∼ (yQX)µQ/µGS Λ3−µQ/µGS . (3.2)
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Therefore, if µGS
= µQ, superpotential is linear in X, and supersymmetry is broken by the

VEV of the F -term of the X field; FX ∼ yQΛ2. (This class of model of SUSY breaking is
originally discussed in Ref. [14].)

With the above superpotential, scalar potential is given by

V =
|∂XWeff |2
∂∗X∂XK

≃ y2
QΛ4

ZΣ(X∗, X)
, (3.3)

where ∂X represents the derivative with respect to X, K is the Kähler potential, and ZΣ

is the wave function renormalization of Σ. At the tree level, ZΣ = 1, and hence V does
not depend on X. In this case, VEV of X is undetermined. However, once we include the
radiative corrections, the situation changes. Since Σ interacts through gauge and Yukawa
interactions, non-trivial Kähler potential is induced by radiative correction. X dependence
of ZΣ is governed by the renormalization group equation (RGE). At the one loop level, RGE
for ZΣ is given by

d lnZΣ

d lnµ
=

1

16π2

[

CBg
2
B(µ) − CQy

2
Q(µ) − Cqy

2
q (µ)

]

, (3.4)

where coefficients CB, CQ, and Cq are all positive. If the β-function for ZΣ vanishes, we
have a minimum (or maximum) of the potential. The important point is that the gauge
and the Yukawa contributions have opposite signs in the β-function of ZΣ. As we can see
in Eqs. (3.3) and (3.4), gauge contribution makes ZΣ larger at higher energy and drives |X|
to a larger value, while Yukawa contribution affects in the opposite way. As a result, if the
gauge piece dominates the β-function in the low energy, and also if the effect of the Yukawa
terms wins in the high energy, X has a minimum at |X| = v where the β-function vanishes:

CBg
2
B(v) = CQy

2
Q(v) + Cqy

2
q(v). (3.5)

Therefore, in this class of models, potential for X is stabilized by the scale dependence of
the wave function renormalization factor ZΣ. At the minimum, F -component of the X field
has a non-vanishing VEV of O(yQΛ2), and SUSY is broken. Then, fermionic component of
X becomes the goldstino, and in supergravity, it is absorbed in the gravitino. In this case,
gravitino mass is related to FX as

m3/2 =
FX√
3M∗

. (3.6)

Once X gets a VEV v, q and q̄ acquire a SUSY preserving mass of ∼ yqv, as well as
SUSY breaking mass squared for the scalar component of ∼ yqFX . Since q and q̄ have
quantum numbers under the standard model gauge group, the SUSY breaking masses for
the SSM superparticles arise by integrating out these messenger particles. As in the case of
well-known ordinary gauge mediation model, the ratio,

BQ =
FX

v
, (3.7)
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Figure 2: Contours of the constant gravitino mass on the v vs. BQ plane.

determines the scale of the SUSY breaking masses in the SSM superparticles which are of
O(αSM/4π)BQ, with αSM being the appropriate gauge coupling of the standard model gauge
group. BQ should be in the range of 104 GeV<∼BQ

<∼ 105 GeV; the lower bound is from
experimental lower bounds on the masses of the superparticles, while the upper bound is
from the naturalness point of view.

In the following discussions, we use v and BQ as independent parameters in the model,
and rewrite other quantities as functions of them. For example, the gravitino mass is given
by

m3/2 =
vBQ√
3M∗

. (3.8)

In Fig. 2, we show the contours of the constant gravitino mass on the v vs. BQ plane.
Before closing this subsection, we discuss the allowed range of v. Recalling that ∼ y2

qv
2

and ∼ yqFX are the diagonal and off-diagonal elements of the mass squared matrix of the

messenger scalars, v has to be larger than ∼ y−1/2
q F

1/2
X for the positivity of the eigenvalues

of the mass squared matrix; otherwise, messenger scalar has a VEV and the standard model
gauge groups are broken. Another constraint is from the stability of the SUSY breaking
minimum. In some class of models, there is a SUSY preserving true vacuum at the origin
(|X| = 0). In this case, the tunneling rate from the SUSY breaking vacuum to the true
vacuum has to be small enough, so that the lifetime of the SUSY breaking vacuum is longer
than the age of the Universe. This issue is discussed in Ref. [8], and it requires v/Λ>∼ 10.

Since FX ∼ yQΛ2, v >∼ 10y
−1/2
Q F

1/2
X is required in models with true vacuum at the origin.

Notice that this constraint is more stringent than the one from the stability of the messenger
potential, if yQ ∼ yq.
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One important lower bound on v is derived for the validity of our perturbative approach.
If v is close to the strong scale Λ, SU(2)S dynamics generates non-perturbative Kähler
potential, and our perturbative arguments break down. At the scale Λeff , we expect a non-
perturbative contribution to the Kähler potential of the form δK ∼ [(WαWα)(W̄α̇W̄ α̇)]1/3 ∼
Λ∗

effΛeff [22, 8], where Wα is the spinor superfield for SU(2)S. With the naive dimensional
analysis [23], coefficient of this operator is estimated to be of O((4π)−2/3). Requiring this
effect to be smaller than the perturbative one, v has to be larger than 109 − 1010 GeV [8].
However, it may be possible that the minimum of the potential exists even with the non-
perturbative effect. (For a model in which the SUSY breaking minimum is stabilized by
non-perturbative effects, see Ref. [11].) In this case, we need to make some dynamical
assumptions not to change our following discussions, since the non-perturbative effect is not
calculable. However, most importantly, strong dynamics does not break the R-symmetry,
and hence the properties of the R-axion is unchanged. Consequently, evolution of the R-
axion is basically unaffected, even if the non-perturbative effect becomes important at the
minimum of the potential. With these caveats in mind, we also consider the case with
v <∼ 109 GeV in the following discussion. In this case, we make an implicit assumption that
the minimum of the potential is stabilized even after taking account of the non-perturbative
effect.

Finally, we comment on the upper bound on v. As can be seen from Eq. (3.8), gravitino
mass becomes larger than ∼ 100 GeV for v >∼ 1016 GeV with BQ ∼ 104 GeV. In this case,
supergravity contribution to the sfermion masses becomes comparable to the gauge mediation
piece, and hence SUSY FCNC problem arises again. Therefore, v ≪ 1016 GeV is required
to solve SUSY FCNC problem.

3.2 Potential of X

In order to discuss the cosmological implication of X, it is important to understand the
properties of its potential, which is the subject of this subsection.

We are interested in the models in which the minimum of the X field is determined by
the inverted hierarchy mechanism. In this class of models, the potential at the global level
is only lifted by the renormalization group effects, and hence it can be expanded by powers
of lnX∗X:#3

Vglobal = F 2
X/ZΣ

= F 2
X



− 1

16π2

Z ′
Σ(µ)

Z2
Σ(µ)

ln
X∗X

µ2
+

1

(16π2)2

(

Z ′2
Σ (µ)

Z3
Σ(µ)

− Z ′′
Σ(µ)

Z2
Σ(µ)

)(

ln
X∗X

µ2

)2

+ · · ·




≡ F 2
X





ζ1(µ)

16π2
ln
X∗X

µ2
+

ζ2(µ)

(16π2)2

(

ln
X∗X

µ2

)2

+ · · ·


 , (3.9)

#3After the second line, we omit the constant piece. We assume that the cosmological constant is cancelled
out by supergravity effect, and hence the constant term does not matter.

8



with

Z ′
Σ ≡ 8π2 dZΣ

d lnµ
, Z ′′

Σ ≡ (8π2)2 d2ZΣ

d(lnµ)2
. (3.10)

Here, ζn is a 2n-th polynomial of gauge and Yukawa coupling constants. We factorized rele-
vant powers of 16π2, so that coefficients in ζn become typically of O(1). Without cancellation,
ζn is close to 1 if some of the gauge or Yukawa coupling is close to 1.

In Eq. (3.9), µ can be an arbitrary scale; µ dependence is cancelled out by the renormal-
ization group effect. If we take µ = v where Z ′

Σ vanishes, Vglobal starts with a term which is
quadratic in lnX∗X, and hence the potential has an extremum at |X| = v. In particular, if
ζ2(v) > 0, potential has a minimum there, which is what we desired. Hereafter, we assume
that the gauge and Yukawa coupling constants are arranged so that ζ2(v) > 0. Around this
minimum, potential starts with (lnX∗X)2 term which is suppressed by (16π2)−2. However,
once |X| becomes much larger (or smaller) than v, ζ1 at that scale may become large so
that the potential is approximated to be linear in lnX∗X, with being suppressed only by
(16π2)−1.

So far, we have discussed the potential in the framework of global SUSY. However,
supergravity effect also generates important terms in the potential. First of all, all the
scalar fields receive SUSY breaking masses of the order of the gravitino mass. This effect
becomes important especially when the amplitude of X becomes large. Another important
implication is that the R-symmetry is (explicitly) broken due to the supergravity effect if
the cosmological constant is cancelled out [24]. Under U(1)R symmetry, superpotential has
the charge of +2. However, in order to cancel the cosmological constant, a constant term
is needed in the superpotential. From the cross term between them, R-symmetry breaking
potential is induced:

V 6R ∼ −F
2
X

M∗
(X∗ +X) × f(X∗X/M2

∗ ), (3.11)

where f is an unknown function. We expand this function as

f(x) = k0 + k1x+ · · · , (3.12)

where coefficients kn are expected to be of O(1). By combining these contributions, super-
gravity contribution is of the form:

VSUGRA ∼ m2
3/2X

∗X + V 6R. (3.13)

In fact, the linear term in V 6R may cause a problem. If we neglect the logarithmic terms,
non-vanishing k0 shifts the minimum of the potential from X = 0 to X ∼ k0M∗. Thanks to
the logarithmic term in Vglobal, potential can have a minimum at |X| = v ≪ M∗. However,
with the potential

V ∼ ζ1
16π2

F 2
X lnX∗X − k0

F 2
X

M∗
(X +X∗) +m2

3/2X
∗X + · · · , (3.14)

9



another minimum still exists at |X| ∼M∗ when k0 ∼ O(1). With this minimum, X is more
likely to settle down to this unwanted minimum if X has an initial amplitude of O(M∗).
This is because the potential is dominated by the supergravity contribution for such a large
amplitude, and hence X does not feel the effect of the logarithmic piece unless |X| becomes
small enough. In order to remove this unwanted minimum, we assume k0 to be small enough,

k0<∼
ζ1
4π
. (3.15)

If ζ1 is of O(1), this is a tuning of 10 % level, and we believe accidental cancellation would
be enough for this suppression.#4

3.3 Properties of the Physical Modes

At around the minimum (|X| ∼ v), we have two physical scalars from X. In order to discuss
the properties of these fields, it is convenient to parametrize the X field as

X =

(

v +
1√
2
σ

)

eia/
√

2v. (3.16)

Expanding the potential around the minimum, we obtain the mass of the σ as

m2
σ = − Z ′′

Σ(v)

(16π2)2

F 2
X

v2
=

ζ2(v)

(16π2)2

F 2
X

v2
, (3.17)

where we normalized as ZΣ(v) = 1. Notice that σ is as heavy as the SSM superpartners if all
the gauge and Yukawa coupling constants are of the same order. On the contrary, a is the
pseudo-Nambu-Goldstone boson for the R-symmetry, which is usually called R-axion. The
main source of the R-axion mass is the R-symmetry breaking term from the supergravity
effect;

V 6R = −k0
F 2

X

M∗
(X∗ +X), (3.18)

where k0 is (unknown) O(1) constant introduced in Eqs. (3.11) and (3.12). (Around the
minimum |X| = v, higher order terms are suppressed by powers of v2/M2

∗ .) From this
potential, the R-axion mass is given by [24]#5

m2
a = k0

F 2
X

vM∗
≃
[

6 GeV × k
1/2
0

(

BQ

105 GeV

)(

v

1010 GeV

)1/2
]2

. (3.19)

#4The values of k0 at |X | ∼ M∗ and at |X | ∼ v are supposed to be different. In particular, in our case,
moduli field exists which has a very large initial amplitude of O(M∗). The value of k0 should be affected by
the evolution of the moduli field.

#5There is another contribution to the R-axion mass from the QCD anomaly, which is, however, much
smaller than the supergravity effect. This fact suggests that it is difficult to use this R-axion as a solution
to the strong CP problem, unless the supergravity effect is much smaller than the naive expectation.
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Next, we consider the decay rate of these fields. The R-axion dominantly decays into
gauge boson pairs.#6 Since the R-axion couples to the messenger multiplets q and q̄ which
transform under SU(3)C × SU(2)L × U(1)Y, the R-axion has a coupling to the standard
model gauge bosons at the one-loop level. Then, its decay rate is calculated as

Γa =
nG

32π

(

αSMbq
4π

)2
m3

a

v2
. (3.20)

Here, nG is the number of the final state, bq is the β-function coefficient of q + q̄, and αSM

is the corresponding gauge coupling constant. For example, for the decay into the gluon
pair (a → gg), nG = 8, bq = N5, and αSM = αs, while for the decay into the photon pair
(a→ γγ), nG = 1, bq = 8

3
N5, and αSM = αem, with N5 being the number of messenger chiral

superfields in units of 5+ 5̄ representations of SU(5). (For the model shown in Appendix A,
N5 = 2.)

On the other hand, the σ field dominantly decays into the R-axion pair (σ → aa). From
the following Lagrangian:

L = ∂µX
∗∂µX ≃ 1

2
∂µσ∂µσ +

1

2
∂µa∂µa+

1√
2v
σ∂µa∂µa+ · · · , (3.21)

we obtain the decay rate of this process to be

Γσ =
1

64π

m3
σ

v2
. (3.22)

Notice that σ also decays into the gauge boson pairs, and the decay rate for this process
is given by a similar formula as Eq. (3.20) with ma being replaced by mσ. Comparing the
decay rates for these processes, we can see that σ → aa is the dominant decay mode for σ.

The decay mode into the gravitino pair is potentially significant. Indeed, the SUSY
breaking field has an interaction as

L = − 1

2M2
∗
Wψ̄µσ

µνPLψν + h.c. ≃ − 1

2M2
∗
FXXψ̄µσ

µνPLψν + h.c., (3.23)

with ψµ being gravitino. This interaction induces the decay process X → ψµψµ, and in
particular, the decay into the longitudinal component is the most important. With the
Lagrangian given above, we obtain the decay rate as

δΓX ≡ Γ(X → ψµψµ) =
1

32π

m5
X

F 2
X

, (3.24)

#6If the ordinary quarks and leptons have non-vanishing R-charge, the R-axion may decay into these
fermions. However, it is unknown whether the R-symmetry can be consistently defined in the SSM sector,
and the couplings of the R-axion to the quarks and leptons are model-dependent. In particular, these
couplings cannot be fixed unless we specify the mechanism to generate so-called µ- and B-parameters.
Furthermore, these decay processes are chirality suppressed. In this paper, we assume that these decay
modes are negligibly small. The R-axion may also decay into gaugino pairs. However, the R-axion is lighter
than the gauginos in most of the parameter region we consider. Therefore, we do not consider this decay
mode. Notice that the decay rate for this process is at most comparable to that into gauge bosons. Therefore,
qualitatively, the following arguments are unchanged even if the R-axion decays into gaugino pairs.
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with X = a and σ. Comparing Eq. (3.24) with Eqs. (3.20) and (3.22), the branching ratio
for the process X → ψµψµ is estimated as

Br(a→ ψµψµ) ≃ δΓa

Γa
≃ 1

nG

(

ma

(αSMbq/4π)BQ

)2

, (3.25)

Br(σ → ψµψµ) ≃ δΓσ

Γσ
≃ 2

(

mσ

BQ

)2

. (3.26)

Notice that these branching ratios are much smaller than 1. In the parameter region we
consider, the R-axion mass is usually smaller than O(αSM/4π)BQ. Furthermore, as shown
in Eq. (3.17), mσ is smaller than BQ. Therefore, in both cases, the decay modes into the
gravitino pair are suppressed. Even with small branching ratios, however, the decay of the
R-axion and σ may overproduce the gravitino, resulting in too much mass density of the
Universe. We will come back to this point in the next section.

4 Evolution of the Scalar Fields

Now, we are ready to discuss the evolutions of the scalar fields, i.e., the SUSY breaking field
X and the moduli field φ. Since the behavior of X changes at |X| ∼ v, we first consider the
evolution when |X| ≫ v. Then, the behavior of X when |X| ∼ v is considered.

4.1 |X| ∼M∗

In our discussion, we adopt the picture of the inflationary cosmology; we assume a primordial
inflation which solves horizon and flatness problems. During this inflation, X and φ are
shifted from their minimum, and these fields have very large initial amplitudes. We assume
that their initial amplitudes are both of O(M∗). This may happen because of the chaotic
assumption on the initial condition of scalar fields [25], due to modification of the scalar
potential during the inflation with large expansion rate [15], or in the case of no-scale type
supergravity [26]. Importantly, e-folding of this primordial inflation is large enough to solve
the horizon problem, and hence X and φ have coherent initial states for the scale of the
current horizon. After the primordial inflation, reheating happens, and the Universe becomes
radiation dominated. At this stage, X and φ keep their initial values as far as the expansion
rate is larger than their masses.

Once the expansion rate of the Universe becomes comparable to the mass of X and
φ, these fields start to move. Since these fields (in particular, X) are assumed to have
large amplitudes of O(M∗), the potential for these fields are initially dominated by the
supergravity contributions. Furthermore, with these large initial amplitudes, energy density
of the radiation becomes comparable to those of X and φ when these fields start to move.
Then, after this stage, energy density of radiation decreases faster than those of X and φ,
and the Universe is dominated by the coherent oscillation.
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Once the moduli field φ starts oscillation, its evolution is quite simple. Approximating
its potential to be quadratic as ∼ m2

3/2φ
2, the energy density of the moduli field scales as

R−3, with R being the scale factor.
One may worry about a possible shift of the minimum of the moduli potential, in par-

ticular, due to the non-vanishing expansion rate H induced by X. When the Universe is
dominated by a condensation of a scalar field (in our case, X), supergravity effect induces
extra terms in the moduli potential, which are proportional to H2 [15]. This effect shifts
the minimum of the moduli potential, and φ oscillates around the shifted minimum. If the
minimum moves more drastically than φ, behavior of φ is affected by the change of the
potential, and our argument breaks down. However, in our case, this is not the case; time
scale of the shift of the minimum is H−1, which is much longer than that of the oscillation
m−1

3/2. As a result, φ can catch up with the shift of the minimum. Therefore, if we consider
the oscillation around the shifted minimum, our argument is unchanged. In particular, this
does not affect the calculation of the current energy density of the moduli field since the
shifted minimum smoothly approaches to the true minimum as the Universe expands. (For
details, see Appendix B.)

Evolution of the SUSY breaking field X is more complicated. When X starts to move,
angular component of X (R-axion mode) is excited by the Affleck-Dine mechanism and R-
number is generated. Furthermore, when logarithmic potential takes over the supergravity
contribution, energy density of X decreases much slower than that of the moduli field.

Let us first discuss the generation of the R-number due to the Affleck-Dine mecha-
nism [16]. For our argument, it is convenient to define the R-number density:

nR = i(X∗Ẋ − Ẋ∗X). (4.1)

Then, with the R-symmetry breaking terms given in Eq. (3.11), time evolution of nR is given
by

ṅR + 3HnR = −i
(

∂V

∂X
X − ∂V

∂X∗X
∗
)

= 2F 2
XIm(X/M∗) × f(|X|2/M2

∗ ). (4.2)

Notice that, if the potential respects the R-symmetry, the right-hand side of Eq. (4.2) van-
ishes.

In our case, R-symmetry breaking effect is the largest when X has the maximum am-
plitude, and R-number asymmetry is generated when X starts to move (see Appendix C).
R-number at this stage is estimated as

nR ∼ H−1 × 2F 2
XIm(X0/M∗) × f(|X0|2/M2

∗ ). (4.3)

By using H ∼ m3/2, we obtain

nR ∼ 2F 2
Xξ sin θ0
m3/2

, (4.4)
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Figure 3: Initial motion of the SUSY breaking field X on the complex X plane. We choose
the set of parameters as X0 = M∗e

iπ/2, ζ1 = 0.3, k1 = 0.2, and other ζn’s and kn’s are taken
to be 0.

where the initial value of X is parameterized as X0 = |X0|eiθ0, and ξ ∼ (|X0|/M∗) ×
f(|X0|2/M2

∗ ) is expected to be of O(1) if |X0| ∼M∗.
In Fig. 3, we show a typical behavior of X on the complex X plane. As an example, we

choose the set of model parameters as

X0 = M∗e
iπ/2, ζ1 = 0.3, k1 = 0.2, (4.5)

and other ζn’s and kn’s are taken to be 0.
In order to discuss the evolutions of the moduli field andX simultaneously, it is convenient

to take the ratio of the energy density of φ, ρφ, to nR. Since the initial energy density of the
moduli field is of the order of m2

3/2φ
2
0 ∼ F 2

X × (φ0/M∗)
2, we obtain

ρφ

nR
∼ m3/2

2ξ sin θ0

(

φ0

M∗

)2

. (4.6)

Notice that ρφ and nR are both proportional to R−3, and the ratio ρφ/nR remains constant
as far as the R-symmetry breaking effects can be neglected.

4.2 v <∼ |X|<∼M∗

Once the SUSY breaking field X and the moduli field φ start to oscillate, their amplitudes
adiabatically decrease with the expansion of the Universe. Their relation is determined by
Eq. (4.6), and the final result can be derived without discussing the detail of their evolutions.
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However, in this subsection, we discuss how their amplitudes behave when v <∼ |X|<∼M∗ for
a better understanding of the behaviors of X and φ.

As discussed in Appendix D, amplitude of the scalar field ϕ (corresponding to X and φ)
obeys the relation

meffϕ
2R3 = const., (4.7)

where the “effective mass” meff is defined as

m2
eff =

1

2

(

1

ϕ∗
∂V

∂ϕ
+

1

ϕ

∂V

∂ϕ∗

)

. (4.8)

Effective masses of X and φ depend on their amplitudes differently. Potential for the
moduli field φ is parabolic, and hence meff is independent of the amplitude. Thus, the
amplitude of the moduli field scales as R−3/2.

We next discuss the evolution of X. For this purpose, let us remind the structure of the
potential of X:#7

V ∼ ζ1
16π2

F 2
X lnX∗X +m2

3/2X
∗X. (4.9)

As mentioned in the previous subsection, supergravity contribution wins the global SUSY
contribution when |X| is large. Comparing two contributions, supergravity effect is more
important above a threshold value Xthr which is estimated as

Xthr ∼
√
ζ1

4π
M∗. (4.10)

For |X|>∼Xthr, supergravity effect wins the global SUSY contribution, and meff ∼ m3/2 for

X. In this case, the amplitude of X scales as R−3/2. On the other hand, for |X|<∼Xthr,
potential is dominated by the logarithmic piece, andmeff ∝ |X|−1. In this case, the amplitude
of X is proportional to R−3.#8

Comparing the evolutions of X and φ, their amplitudes are related as

φ/|X| ∼
{

φ0/|X0| : |X|>∼Xthr

(Xthr/|X|)1/2 × (φ0/|X0|) : |X|<∼Xthr
, (4.11)

with φ0 and X0 being the initial values of X and φ, respectively. For |X|>∼Xthr, X and φ
scales in the same way, while for |X|<∼Xthr, the amplitude of X decreases faster than that
of φ.

The evolution of the energy density of X and φ is also non-trivial. When |X|>∼Xthr, both
X and φ obey parabolic potential, and their energy density scale as R−3. However, once

#7We neglect the R-symmetry breaking part; even if we include its effect, the result is unchanged.
#8If |X | becomes close to v, potential is approximately proportional to (lnX∗X)2. In this case, this relation

receives a logarithmic correction; |X |(ln |X |)1/2R3 = const.
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the amplitude of X becomes smaller than Xthr, potential for X is lifted only logarithmically,
and energy density of X decreases very slowly with the decrease of |X|. The important
point is that, once the potential of X is dominated by the logarithmic piece, energy density
of φ decreases much faster than that of X, and hence the energy density of the Universe is
dominated by X. Therefore, when X decays, there can be a large entropy production to
dilute the moduli field away.

When the amplitude ofX becomes ofO(v), X is trapped in the minimum of the potential.
Then, the amplitude of X is fixed to be v, and we need to consider the excitations around the
minimum. They are phase degrees of freedom (i.e., R-axion) and radial degrees of freedom.
Effects of these fields are discussed in the following subsections.

Some of the models have a SUSY preserving true vacuum at the origin X = 0, and one
may worry whether X can be smoothly trapped in the SUSY breaking (false) vacuum of
|X| = v. If X would overshoot down to the origin, this scenario would not be phenomeno-
logically viable. Since X follows an elliptic trajectory on the complex X plane, as shown in
Fig. 3, X can result in the SUSY breaking minimum at |X| = v without being affected by
the potential for |X| ≪ v. Important point is that, thanks to the R-number conservation
in the comoving volume, the orbit of X is always elliptic once the R-number is generated.
Consequently, even though the amplitude of X decreases with the expansion of the Universe,
orbit does not pass by the origin if enough R-number asymmetry is generated. In this case,
when |X| ∼ v, X traces a trajectory which is (approximately) parallel to the minimum of the
potential (|X| = v), and X is smoothly trapped in the SUSY breaking vacuum. Therefore,
once enough R-number asymmetry is generated, X is expected to result in the minimum of
the potential |X| = v, irrespective of the structure of the potential for |X| ≪ v. Of course,
this scenario depends on the initial value of the R-number asymmetry. Importantly, if the
initial amplitude of X is as large as M∗, Affleck-Dine mechanism can generate very large
asymmetry, as discussed in the previous subsection. With a reasonable choice of the model
parameters, we can easily have an elliptic trajectory of X with eccentricity close to 0. This
fact helps us to understand how X can be trapped in the SUSY breaking vacuum at |X| = v.

4.3 Effect of the R-axion

Once the amplitude of X becomes of O(v), the X field is trapped in the minimum |X| = v.
After this stage, the imaginary part (R-axion) and the real part of X behave differently.
Thus, we discuss their effects separately.

First, we argue the effect of the R-axion a. Since a is the pseudo-Nambu-Goldstone
boson, its potential is approximately flat with slight perturbation due to V 6R. When we can
neglect the R-symmetry breaking effects, motion of a corresponds to the phase rotation of
X. At this period, it is convenient to parametrize the X field as

X = veiωt. (4.12)

Here, we neglect the real part of the X field. Then, the R-number is given by

nR = 2ωv2 = 2ρa/ω, (4.13)
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where ρa is the energy density of the R-axion. With the expansion of the Universe, ω
decreases adiabatically; since the R-number in the comoving volume is conserved, ω scales
as R−3.#9

Once the energy density of the R-axion becomes less than the difference of the potential
energy ∆V on the circle |X| = v, the R-axion starts to oscillate around its minimum. Once
this happens, R-symmetry is not a good symmetry any more, and the R-axion approximately
obeys the parabolic potential. After this stage, energy density of a scales as R−3. With the
potential given in Eq. (3.18), the difference of the potential energy is given by ∆V = V (X =
−v) − V (X = v) = 4m2

av
2, and hence two cases should be matched when ω ∼ O(ma).

Connecting two cases at ω = ωc, we obtain

ρφ

ρa

∼ ρφ

(ωcnR/2)
∼ m3/2

ωcξ sin θ0

(

φ0

M∗

)2

. (4.14)

This ratio remains constant until the R-axion decays.#10

Motion of the R-axion at ρa ∼ m2
av

2 is complicated, and analytic estimation of ωc is
difficult. In our analysis, we numerically followed the evolution of the R-axion, and estimated
the value of ω for matching. As a result of the numerical calculation, we found that two
cases should be connected with

ω = ωc ≃ 4ma. (4.15)

In the following discussion, we use ωc = 4ma.
When the expansion rate of the Universe becomes comparable to the decay rate of the

R-axion, the R-axion decays and the Universe is reheated. By using the instantaneous decay
approximation, the reheating temperature TR is estimated as

TR ∼
(

π2g∗
90

)−1/4
√

ΓaM∗

∼ 20 MeV × k
3/4
0

(

αSMbqn
1/2
G

)

(

g∗
10

)−1/4 ( BQ

105 GeV

)3/2 ( v

1010 GeV

)−1/4

, (4.16)

where we used the decay rate given in Eq. (3.20) in the second line. (A special case where
this may be irrelevant will be discussed later.) At this stage, the energy density of the R-
axion is converted to that of the radiation, and large amount of entropy is produced. At the

#9For a scalar field ϕ with flat potential, equation of motion is given by ϕ̈ + 3Hϕ̇ = 0. By solving
this equation, we obtain ϕ̇R3 = const. Evolution of ω is consistent with this relation, if we re-interpret

eiωt → eia/
√

2v.
#10If the amplitude of X is largely fluctuated, domain wall is produced when the R-axion gets trapped
in the minimum of the potential. Such a fluctuation is generated during the primordial inflation, and the
domain wall production may be effective if the expansion rate during the inflation is larger than of O(v) [27].
Therefore, if we adopt a primordial inflation with relatively small expansion rate, the domain wall production
can be evaded. Furthermore, even if the domain wall production is effective, collapse of the domain wall
results in semi-relativistic R-axions with averaged energy of ∼ 3ma [28]. Therefore, domain wall production
does not modify the ratio ρφ/ρa given in Eq. (4.14) so much, and the dilution factor calculated below is
almost unchanged.
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decay time, energy density of radiation is given by ρrad = ρa, and hence

ρφ

s
∼ 3

4
TR × m3/2

4maξ sin θ0

(

φ0

M∗

)2

, (4.17)

where s is the entropy density which is related to the energy density of the radiation as
ρrad = 3

4
Ts. We compare Eq. (4.17) with the ratio of the critical density to the entropy

density in the present Universe:

ρc

s
≃ 3.6 × 10−9 GeV × h2, (4.18)

and we obtain

Ωφh
2 ∼ 40 × k

1/4
0

(

αSMbqn
1/2
G

)

(

g∗
10

)−1/4 ( BQ

105 GeV

)3/2 ( v

1010 GeV

)1/4
(

φ0

M∗

)2

, (4.19)

where we used ξ sin θ0 ∼ 1.
Now, we can calculate the numerical value of the density parameter, and see if it is

cosmologically viable. For this purpose, we first have to specify the dominant decay mode
of the R-axion, since the result depends on the decay width Γa. If the R-axion mass is large
enough (probably, for ma

>∼ 1 GeV), the R-axion decays into the gluon pair. In this case, we
can use the calculation based on the perturbative QCD, and the decay rate is given in the
formula in Eq. (3.20) with αSM = αs. However, if the R-axion mass becomes as small as (or
smaller than) ∼ 1 GeV, Eq. (3.20) may not be reliable, since in this case, decay rate into
multi-meson final states has to be calculated. However, if the R-axion mass is light enough,
decay modes into multi-meson final states are kinematically forbidden. Since the R-axion is
a CP-odd particle, its mass has to be larger than at least 3mπ for the decay into final states
without electromagnetic particles. Therefore, if ma < 3mπ, a → γγ is expected to be the
dominant decay mode. In this case, we can use the Eq. (3.20) again with αSM = αem. In
the case 3mπ ≤ ma

<∼ 1 GeV, estimation of the decay rate is quite difficult, and we will not
discuss this case further in this paper.

In Figs. 4 and 5, we plotted Ωφh
2 on the v vs. BQ plane with φ0 = M∗ and N5 = 2. In

the calculation, we used Eq. (4.17) with ξ sin θ0 = 1, and assumed that a→ γγ and a→ gg
are the dominant decay modes of the R-axion for ma ≤ 3mπ and ma ≥ 1 GeV, respectively.
In these figures, we shaded the region where the reheating temperature becomes lower than
1 MeV. We also show the contours of the constant v/F

1/2
X , which has to be larger than

∼ 1 − 10.
Let us first discuss the case of ma ≤ 3mπ, where the R-axion decays into the photon

pair. This is the case for the smaller value of v (i.e., v <∼ 108 − 109 GeV). If the R-axion
decays into the photon pair, the reheating temperature becomes relatively low. However,
if BQ is large enough, there is still a parameter region where the reheating temperature is
high enough (TR

>∼ 1 MeV). At the same time, Ωφ can be of O(0.1) or smaller, and hence
the moduli field can be diluted enough by the decay of the R-axion.
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One problem of this case may be the non-perturbative effect discussed in Section 3. In
the case of v <∼ 109 GeV, non-perturbative effect becomes sizable in the Kähler potential,
and hence the potential of X cannot be well understood. Therefore, we need to make
a dynamical assumption so that the SUSY breaking vacuum exists. However, since the
non-perturbative effect respects the R-symmetry, important properties of the R-axion are
unchanged. Therefore, once we assume the existence of the SUSY breaking minimum, our
arguments are unchanged. One may also worry about the stability of the vacuum if there
is a SUSY preserving true minimum at the origin. However, TR

>∼ 1 MeV can be realized

even with v/F
1/2
X

>∼ 10. Furthermore, this problem can be evaded in models without SUSY
preserving minimum.

For a larger value of v (i.e., v >∼ 109 − 1010 GeV), the R-axion becomes heavier than
∼ 1 GeV, and decays into the gluon pair. As we can see in Figs. 4 and 5, if the R-axion
decays into the gluons, the density parameter of the moduli field becomes relatively larger.
This is because the decay rate is more enhanced, resulting in higher reheating temperature.
Even in this case, however, Ωφ ∼ 10 is possible for φ0 ∼M∗. Reduction of Ωφ by a factor of
about 10 may not be a serious problem. For example, suppression of the initial amplitude
of the moduli field by a factor of 3 or so is enough for Ωφ ≤ 1, since Ωφ is proportional
to φ2

0. We can naturally imagine an accidental cancellation of this level. Notice that the
non-perturbative effect on the Kähler potential is not important in (most of) this case.

4.4 Effect of the Real Part

Next, we discuss the effect of the decay of the real part σ. For this purpose, it is convenient
to use the relation meffϕ

2 ∝ R−3 (with ϕ = X and φ). Comparing this quantity at |X| ∼ X0

and |X| ∼ v, we obtain

m3/2φ
2

mσσ2
∼
(

φ0

X0

)2

. (4.20)

The important point is that the effective mass for the moduli field is always constant of
O(m3/2), while that for X varies from ∼ m3/2 to mσ which is of the order of the SSM scale.

Once X gets trapped in the SUSY breaking minimum, σ obeys the parabolic potential,
and hence Eq. (4.20) leads

ρφ

ρσ
∼ m3/2

mσ

(

φ0

X0

)2

, (4.21)

where ρσ is the energy density of σ.
When the expansion rate becomes comparable to Γσ, σ decays. As discussed in Section 3,

σ dominantly decays into the R-axion pair. The number density of σ, nσ, is related to the
energy density as ρσ = mσnσ. Therefore, by using Eq. (4.21) with |X0| ∼ M∗, we obtain

ρφ

ndec
a

∼ m3/2

(

φ0

M∗

)2

, (4.22)

20



where ndec
a is the number density of the R-axion produced by the decay of σ. Notice that

this ratio is constant even with entropy production.
As the Universe expands, the emitted R-axions are red-shifted and eventually become

non-relativistic. Then, when they decay, they also contribute to the entropy production to
dilute the moduli field. Comparing Eq. (4.22) with Eq. (4.6), we see that the number of the
R-axion produced by the decay of σ is comparable to that of the coherent mode. Therefore,
the dilution by this incoherent R-axion is of the same order of that by the coherent mode,
and the results given in the previous subsection are almost unchanged.

Finally, we discuss the effect of the decay mode into the gravitino pair. As discussed in
Section 3, σ and a may decay into the gravitino. Since the gravitino is stable in GMSB, the
mass density of the gravitino, ρ3/2, should not exceed the closure limit.

Let us consider the gravitino production due to the decay of σ as an example. In order
to discuss the mass density of the gravitino by the decay of σ (and of the R-axion), it is
convenient to consider the ratio m3/2n3/2/ρφ ∼ ρ3/2/ρφ, where n3/2 is the number density
of the gravitino. This ratio can be easily calculated from Eq. (4.21). When σ decays, the
number density of the gravitino is given by

n3/2 ∼ Br(σ → ψµψµ) × nσ ∼ Br(σ → ψµψµ) × ρσ

mσ
. (4.23)

Combining this equation with Eq. (4.21) and |X0| ∼M∗, we obtain

m3/2n3/2

ρφ
∼ Br(σ → ψµψµ) ×

(

φ0

M∗

)−2

. (4.24)

Importantly, this ratio remains constant even after a large entropy production. Once the
gravitinos are red-shifted to be non-relativistic, the above ratio becomes ρ3/2/ρφ. As a result,
the density parameter of the gravitino, Ω3/2, is related to Ωφ as

Ω3/2 ∼ Br(σ → ψµψµ) × Ωφ

(

φ0

M∗

)−2

. (4.25)

It is also straightforward to check that the density parameter of the gravitino from the decay
of the R-axion is given by a similar formula (with extra coefficient of O(1)) with the relevant
branching ratio for the R-axion.

With the branching ratio given in Eqs. (3.25) and (3.26), we can see that the mass density
of the gravitino is small enough. By using the formula for mσ, Br(σ → ψµψµ) is estimated
to be of O(10−4). Furthermore, in most of the parameter region we are interested in, the
R-axion mass is smaller than about 10 GeV, and hence Br(a→ ψµψµ) is at most of O(10−2).
Therefore, even with Ωφ × (φ0/M∗)

−2 ∼ 10 for v >∼ 109 − 1010 GeV (i.e., for ma
>∼ 1 GeV),

the energy density of the gravitino is small enough.
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4.5 Baryogenesis and the Flat Direction in SSM

So far, we have discussed the dilution of the moduli field by the decay of the R-axion. In
this scenario, one may worry about the baryogenesis, since the reheating temperature seems
to be too low to generate the baryon asymmetry. In this subsection, we briefly comment
that enough baryon asymmetry can be generated by the Affleck-Dine mechanism [16]. (For
a detailed discussion, see Ref. [5].)

Important assumptions for the Affleck-Dine baryogenesis are that SSM flat direction
ϕSSM (for Affleck-Dine baryogenesis, we call it Affleck-Dine field) has a large amplitude in
the early Universe, and that there is baryon-number breaking term in the potential of ϕSSM.
With these assumptions, non-vanishing baryon-number can be generated as the Affleck-Dine
field evolves. Physics in this mechanism is basically the same as that in the case of the
R-number generation.#11 Since the potential for the Affleck-Dine field is dominated by the
supergravity contribution for ϕSSM ∼M∗, the ratio of the energy density of the moduli field
to the baryon number density nB is estimated as [5]

ρφ

nB
∼ m3/2

(

φ0

M∗

)2

, (4.26)

where we applied a similar argument as in the R-axion case. Here, we assumed that the
initial amplitude of ϕSSM is of O(M∗) and that source of CP violation is of O(1), which are
corresponding to ξ ∼ 1 and sin θ0 ∼ 1 in the R-axion case, respectively. Notice that this
ratio is constant after the moduli and Affleck-Dine fields start to move.

With Eq. (4.26), we can estimate the baryon number density of the present Universe,
once we fix the current mass density of the moduli field. As we discussed in the previous
subsections, present mass density of the moduli field depends on the magnitude of the entropy
production. In this subsection, we just assume the moduli field is diluted enough by the decay
of the R-axion. Then, adopting Ωφ

<∼ 1, baryon-to-entropy ratio is estimated as [5]

nB

s
<∼ 4 × 10−5 × h−2

(

m3/2

100 keV

)−1
(

φ0

M∗

)−2

. (4.27)

Comparing the above relation with the baryon number density required from the big-bang
nucleosynthesis (nB/s ∼ O(10−11) [29]), we can see that enough baryon asymmetry can
remain even if there is a large entropy production to dilute the moduli field. In fact, as
can be seen in Eq. (4.27), baryon-to-entropy ratio may be too large for some value of the
gravitino mass, if we adopt a naive initial condition for the Affleck-Dine field. However,
this problem may be solved by adopting a smaller value of the source of CP violation, or a
smaller value of the initial amplitude of the Affleck-Dine field. Therefore, we do not worry
about this issue.

Even apart from the baryogenesis, effect of the SSM flat direction may be interesting,
since it may produce a large entropy. The potential for the flat direction has a similarity to
#11The structures of the baryon-number breaking terms may be different. However, it does not affect the
following discussions, as far as the initial amplitude of ϕSSM is of O(M∗).
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that of the σ field; it is parabolic around the minimum (i.e., around the origin), then the
potential is lifted only logarithmically once the amplitude becomes larger than the messenger
scale, and finally, supergravity effect dominates when the amplitude is close M∗. Therefore,
its effective mass varies from ∼ m3/2 to the SSM scale, if ϕSSM changes its amplitude from
∼M∗ to ∼ 0. By applying the similar argument as in the σ case, we can estimate the density
parameter of the moduli field:

Ωφh
2 ∼ 2 × 103 ×

(

mSSM

1 TeV

)−1 ( m3/2

1 keV

)(

TSSM

10 TeV

)

(

φ0

M∗

)2

, (4.28)

where TSSM is the reheating temperature due to the decay of the flat direction. Comparing
this result with Eq. (2.1), we can see that a large entropy production is possible even from
the flat direction in SSM.

However, usually, the reheating temperature is of O(10 TeV), and hence the density
parameter becomes typically of O(103) even for m3/2 ∼ 1 keV. Therefore, it seems difficult
to dilute the moduli density enough in a simple scenario, unless we come up with a model
with very light gravitino. However, if the reheating temperature can be somehow lowered
down to ∼ 10 GeV, dilution due to the decay of the SSM flat direction may be enough to
solve the cosmological moduli problem. For example, Pauli blocking may delay the decay
of the flat direction, as pointed out in Ref. [30], although the baryon asymmetry may be
generated too much if we naively apply the argument in Ref. [30].

5 Discussion

In this paper, we have discussed the cosmology based on the direct gauge mediation model
with the inverted hierarchy mechanism. In particular, we have studied the implication of
the SUSY breaking field on the cosmology of GMSB.

If the SUSY breaking flat direction X initially has a very large amplitude of O(M∗), it
can be a source of the large entropy production. In particular, once the amplitude of X
becomes a few orders of magnitude smaller than M∗, potential for X is dominated by the
logarithmic piece. Then, the energy density of X decreases more slowly than those of the
scalars with quadratic potential, and the SUSY breaking field may play a very important
role in cosmology.

In particular, the entropy production by the decay of the R-axion may be so large that
the energy density of the moduli field can be diluted enough. Therefore, the direct gauge
mediation models with the inverted hierarchy mechanism contain a natural candidate of the
large entropy production to solve the serious cosmological moduli problem. We have also
seen that enough baryon asymmetry can be generated by the Affleck-Dine mechanism even
with this large entropy production.

In our discussion, we mainly focused on the case of the direct gauge mediation model
with the inverted hierarchy mechanism. However, the scenario discussed in this paper can
be applied to a larger class of models, since the most important building block is just the
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logarithmically lifted potential of the SUSY breaking field for |X|>∼ v. Consequently, if a
direct gauge mediation model uses the mechanism of SUSY breaking proposed by Izawa
and Yanagida, and by Intriligator and Thomas [14], it automatically contains a reasonable
source of large entropy production. Of course, it is non-trivial for such a model to stabilize
the potential of the SUSY breaking field. The inverted hierarchy mechanism provides one
attractive mechanism for the stabilization [7, 8, 9, 10]. Other approach may be to use a
non-perturbative effect on the Kähler potential [11].

One may worry about the astrophysical constraints on the R-axion, as in the case of the
QCD axion. However, since the R-axion has a larger mass than the QCD axion, constraints
on the R-axion are much weaker. Constraints from the cooling of the horizontal-branch (HB)
stars [31] are evaded, since we consider R-axion heavier than 100 keV (see Eq. (3.19)) while
the core temperature the HB stars are typically of O(10 keV). Furthermore, the R-axion
does not affect the background UV light [32], since it has already decayed away. Constraints
from SN1987A are more non-trivial. In order not to affect the cooling of SN1987A, QCD
axion with the decay constant from ∼ 106 GeV to ∼ 109 GeV is forbidden [33]. However,
for this range of v, the R-axion mass is (almost) always larger than the core temperature of
SN1987A (i.e., O(10 MeV)), and hence the emission of the R-axion is suppressed. (However,
small parameter space around v ∼ 106 GeV and BQ ∼ 104 GeV may be excluded, though
the reheating temperature is too low in this region.) When v <∼ 106 GeV, the R-axion is
thermalized enough in SN1987A, and it does not affect the cooling process. The QCD axion
with small decay constant may be detected in water Čerenkov detectors [34]. However, the
R-axion cannot be constrained with this method, since R-axion decays before reaching the
earth. This fact suggests another constraint on the R-axion; if the emitted R-axions decay
into the photons on the way to the earth, apparent luminosity of SN1987A may be increased.
Therefore, for our scenario, light R-axion is potentially dangerous. However, the estimation
of the R-axion flux is very complicated, in particular since the R-axion may have a mass
comparable to the core temperature of SN1987A. Therefore, it is an open question which
parameter region is excluded from this argument. Notice that, if the R-axion mass is heavier
than of O(10 MeV), this problem can be evaded thanks to the Boltzmann suppression.

In this paper, we have not paid attention to the primordial inflation, since it is beyond
the scope of this paper. Of course, it is important to find a viable candidate of the inflaton
for the primordial inflation, and some efforts are made in this issue [35]. Here, we just
mention that, in our scenario, inflaton for the primordial inflation does not have to decay
into the particles in the SSM sector. Since the background radiation and baryons in the
present Universe originate to the decay of the SUSY breaking field X (and probably, to the
decay of the Affleck-Dine field), primordial inflation is not required to reheat the SSM sector.
In an extreme case, inflaton may decay only into particles in the hidden sector. Even if the
energy density of the Universe is once dominated by that of the hidden sector particles, it is
eventually diluted by the entropy production by the decay of the SUSY breaking field. This
fact relaxes the conventional requirements on the inflaton which is usually required to decay
into the SSM particles.

It is interesting to consider candidates of the CDM in this scenario. Because of the low
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reheating temperature after the decay of the R-axion, thermal productions of any known
candidates are inefficient. In this case, a possible candidate is the coherent oscillation of the
moduli field. Indeed, if the energy density of the moduli field can be diluted to be Ωφ ∼ 1
by the decay of the R-axion, they can be a viable candidate of the CDM. This scenario is
constrained by the line spectrum of the background cosmic X-ray emitted from the decay
of the moduli field [36]. Even if the lifetime is much longer than the age of the Universe,
some fraction of the moduli field has already decayed into the photons, and it contributes to
the background X-ray spectrum. Due to the negative observation of such a line spectrum,
moduli field heavier than about 200 keV is forbidden, if Ωφh

2 = 1 [36].#12 In the direct
gauge mediation model, the gravitino mass (i.e., the moduli mass) can be lighter than about
100 keV, and hence the moduli can be a good candidate of the CDM.

Cosmological implication of the R-axion in other classes of GMSB is another interesting
issue. In general, dynamical SUSY breaking requires spontaneously broken R-symmetry [37].
Therefore, all the dynamical SUSY breaking models contain R-axion in the low energy
spectrum. Then, there is a possibility of large R-number generation by the mechanism we
discussed, if the SUSY breaking field has a large initial amplitude. However, the interaction
of the R-axion is model-dependent, and in some case, its decay rate may be much more
suppressed. In this case, it causes a cosmological difficulty, since the reheating temperature
after the decay of the R-axion becomes too low for the big-bang nucleosynthesis. Of course,
this problem itself can be always evaded by assuming a small initial amplitude of the SUSY
breaking field.

Since different models introduce different sets of new particles which have various prop-
erties, detailed cosmological scenario is model-dependent. Therefore, one should always keep
in mind that the SUSY breaking field (and all the new degrees of freedom) may change the
conventional arguments on the cosmology based on supersymmetric models. In some case, it
may cause a serious cosmological disaster, but in other case, as we have seen, it may provide
a natural and well-motivated solution to several serious cosmological difficulties.
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A Example of the Model

In this Appendix, we show an example of the direct gauge mediation model in which vacuum
is stabilized by the inverted hierarchy mechanism. The model, which is originally proposed
in Ref. [8], is based on the symmetry SU(2)B1 × SU(2)B2 × SU(2)S × GSM. In this model,
SU(2)B1 is a gauge group which stabilize the minimum of the potential, while SU(2)S provides
a strong gauge interaction which induces gaugino condensation to break SUSY. Furthermore,
GSM is the standard model gauge group. The particle content is shown in the Table 1.

Superpotential in this model is given by

W = yQΣQ̄Q+ y3Σq̄3q3 + y2Σq̄2q2 + y1Σq̄1q1. (A.1)

With this superpotential, we concentrate on the flat direction of X ∼ (detΣ)1/2. Along X,
we parametrize

Σ =
1√
2
diag(X,X). (A.2)

Once Σ gets this VEV, Q and Q̄ acquire a mass of mQ ≃ 1√
2
yQX. For µ<∼mQ, SU(2)S is a

pure SUSY Yang-Milles theory, and gaugino condensation induces the superpotential of the
form Weff = 2Λ3

eff , where Λeff is the strong scale of SU(2)S below the mass scale of Q and Q̄.
By matching the strong scales for the theory below and above mQ, we obtain

Weff =
√

2yQXΛ2, (A.3)

where Λ is the strong scale for the theory above mQ. Since the superpotential is linear in
X, F -component of X has a VEV of FX =

√
2yQΛ2, and SUSY is broken.

The minimum of the potential is determined by the inverted hierarchy mechanism [13].
At the tree level, potential for X is completely flat, and hence the scale dependence of the
wave function normalization of Σ determines the position of the minimum. In this case, the
potential for X is given by

V =
F 2

X

ZΣ(X∗, X)
, (A.4)

where ZΣ(X∗, X) is the wave function normalization of Σ which is evaluated at µ = |X|. At
the 1-loop level, RGE for ZΣ is given by

d lnZΣ

dt
=

1

16π2

(

3

2
g2
B1 +

3

2
g2
B2 − 2y2

Q − 3y2
3 − 2y2

2 − y2
1

)

, (A.5)

where gB1 and gB2 are the gauge coupling constants for SU(2)B1 and SU(2)B2, respectively.
Thus, X has an extremum at X = v, where

3

2
(g2

B1 + g2
B2) = 2y2

Q + 3y2
3 + 2y2

2 + y2
1. (A.6)
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SU(2)B1 SU(2)B2 SU(2)S SU(3)C SU(2)L U(1)Y

Σ 2 2 1 1 1 0
Q 2 1 2 1 1 0
Q̄ 1 2 2 1 1 0
q3 2 1 1 3 1 −1/3
q̄3 1 2 1 3∗ 1 1/3
q2 2 1 1 1 2 1/2
q̄2 1 2 1 1 2 −1/2
q1 2 1 1 1 1 0
q̄1 1 2 1 1 1 0

Table 1: Particle content of a direct gauge mediation model given in Ref. [8].

In order to see whether this is a minimum or a maximum, it is convenient to estimate the
mass of the real part of X, which we call σ.#13 For simplicity, we consider the case where
gB2, y3, and y2 are small. (Even in the general case, the following discussion is qualitatively
correct.) Then, mass of σ is given by

m2
σ ≃ 1

(16π2)2

(

33

4
g4
B1 + 24y4

Q − 24g2
B1y

2
Q − 6g2

Sy
2
Q

)

F 2
X

v2
, (A.7)

where gS is the gauge coupling constant of SU(2)S. Importantly, gS is usually large in order
to induces the strong dynamics to break SUSY. Then, for large yQ, g2

Sy
2
Q term becomes so

large that m2
σ becomes negative. (For large enough yQ, m2

σ may become positive, but yQ

blows up below the Planck scale.) Numerically, yQ cannot be larger than 0.2 – 0.3 for the
positivity of m2

σ. For v >∼ 109 GeV, solution to Eq. (A.6) with positive m2
σ can be found with

reasonable values of the coupling constants.
For v <∼ 109 GeV, we cannot neglect the non-perturbative effects, as we discussed in

Section 3. In this case, Kähler potential is dominated by the non-perturbative piece, and
it is unclear whether there can be a minimum. However, since the non-perturbative effects
are not well understood, there is a possibility to have a stable minimum even with the non-
perturbative effect. Therefore, for v <∼ 109 GeV, we make a dynamical assumption so that
the stable SUSY breaking vacuum exists. Notice that, in this case, upper bound on yQ is
irrelevant.

Once the SUSY is broken and the VEV of X is fixed, SUSY breaking is mediated down
to the SSM sector by integrating out messengers, qi and q̄i (i = 3, 2). Since these are the
only superfields with standard model quantum numbers which couple to the SUSY breaking
field, SUSY breaking masses obey the well-known mass formula [38]. Notice that, in this
model, N5 = 2 (see Eq. (3.20)).
#13Imaginary part is pseudo-Nambu-Goldstone boson, and its mass is from the supergravity effect, as
discussed in Section 3.
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Several remarks are in order. First, for µ<∼ v, diagonal SU(2) remains if SU(2)B2 is
gauged. For our cosmological scenario, this may be dangerous, since the R-axion also couples
to this gauge field. If R-axion dominantly decays into this gauge field, energy density of
the standard model particles cannot be generated enough since the gauge field for this
diagonal SU(2) does not couple to the SSM sector. This problem can be evaded if SU(2)B2

interaction is weak enough (i.e., much weaker than the electromagnetic interaction, or maybe
not gauged). Another comment is on the true vacuum of the potential. In fact, this model
has a SUSY preserving true vacuum at the origin (|X| = 0). However, tunneling rate from
the SUSY breaking minimum to the true minimum is small enough, if the SUSY breaking
vacuum is far enough away from the confinement scale Λ; numerically, v/Λ>∼ 10 [8].

B Shift of the Minimum of the Moduli Potential

In this Appendix, we consider how the minimum of the moduli potential shifts when the
SUSY breaking field X is oscillating. When the Universe is dominated by X, extra terms are
induced in the moduli potential by supergravity effects, and they may change the minimum
of the moduli potential. If this shift is too large, it may change our argument, since the
moduli field may oscillate around a shifted minimum. In this Appendix, we see that this
effect is not significant for our case, and that our naive calculations are relevant.

First, let us consider possible modifications of the moduli potential in the presence of
X. In supergravity, there can be two effects. One is from the non-vanishing VEV of X;
since X and φ may have Planck-suppressed interactions, potential may have terms which
are proportional to the powers of (|X|/M∗). The other is from the expansion rate H induced
by the condensation of X; since the scalar potential contains a term of the form ∼ eK/M2

∗V ,
non-vanishing potential energy induces terms proportional to H2 [15].

With these effects, linear term is induced in the moduli potential, which shifts the mini-
mum of the potential:

V (φ) ∼ m2
3/2φ

∗φ−m2
3/2(φ̄

∗φ+ h.c.), (B.1)

where we define the origin of the moduli field so that VEV of φ vanishes for the empty
background. Here, the second term in Eq. (B.1) is the induced term, and φ̄ is given by

φ̄ ∼ max
[

|X|, (H2/m2
3/2)M∗

]

. (B.2)

(In this section, we neglect O(1) coefficients which do not change our argument.) Notice
that φ̄ is the shifted minimum of the potential, and that it is time-dependent.#14 With the

#14Other terms (higher order terms) are less significant for our argument, and they do not change the
following discussion. For example, if the potential has a term of the form H2φ2, solution to the equation
of motion contains a term of O(H2/m2

3/2
)φosc, with φosc being the solution to the equation of motion with

H = 0. However, this is much smaller than the original amplitude φosc since H ≪ m3/2, and hence this
effect is negligible.
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above potential, equation of motion for φ is given by

φ̈+ 3Hφ̇+m2
3/2(φ− φ̄) = 0. (B.3)

Solution to this equation can be written as

φ = φosc + δφ, (B.4)

where φosc is the oscillating solution with φ̄ = 0, while δφ is a perturbation induced by the
new terms. Notice that φosc obeys the original equation of motion:

φ̈osc + 3Hφ̇osc +m2
3/2φosc = 0, (B.5)

and hence its averaged amplitude is proportional to R−3/2. Thus, φosc obeys the behavior
discussed in Section 4.

If φ̄ ∼ |X|, the shift cannot be larger than the averaged amplitude of φosc (see Eq. (4.11)).
In this case, the original amplitude is always larger than the shift of the minimum, and hence
the extra contribution is negligible. Thus, in the following discussion, we concentrate on the
case where φ̄ is dominated by the Hubble-induced term.

In order to consider the Hubble-induced term, we approximate the potential of X as

V ∼ ζ2
(16π2)2

m2
3/2M

2
∗

(

ln
X∗X

v2

)2

, (B.6)

with ζ2 being a constant. This potential has a minimum at |X| = v, and increases loga-
rithmically for large |X|. Therefore, this potential reproduces the important feature of the
potential of X (especially for |X| ∼ v). When the Universe is dominated by X, expansion
rate is estimated as

H ∼
√
ζ2

16π2
Lm3/2, (B.7)

with

L ≡ ln
X∗X

v2
. (B.8)

Importantly, this expansion rate is much smaller than the gravitino mass. With the above
expansion rate, we denote

φ̄ =
kHH

2

m2
3/2

M∗, (B.9)

where kH is an unknown constant expected to be of O(1). We consider the case where the
energy density of the Universe is dominated by that of X, so H decreases as the amplitude
of X approaches to v.
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As shown in Eq. (B.4), solution to Eq. (B.3) is given by the sum of the oscillating solution
φosc which is from the non-perturbed equation of motion and δφ induced by extra terms with
non-vanishing H . We have already understood the behavior of φosc, so now we consider δφ.

The important point in deriving δφ is that the expansion rate H is much smaller than
the gravitino mass m3/2. Because of this, we can expand δφ by powers of (H2/m2

3/2). First,

let us consider a simple case where Ḣ is proportional to H2:

Ḣ = −cHH2, (B.10)

with cH being a constant of O(1). For example, if X has a parabolic potential, cH = 3/2.
In this case, solution to Eq. (B.3) is obtained as

φ = φosc +





kHH
2

m2
3/2

− 6cH(cH − 1)
kHH

4

m4
3/2

+O





H6

m6
3/2







M∗. (B.11)

Notice that the term of O(H2/m2
3/2)M∗ is exactly equal to φ̄. In the case where the potential

of X is logarithmic like Eq. (B.6), formula for Ḣ is slightly different:

Ḣ ∼ − 1

1 + L
H2. (B.12)

In this case, φ is given as

φ = φosc +





kHH
2

m2
3/2

− 36(5 + 2L− L2)

(1 + L)3

kHH
4

m4
3/2

+O





H6

m6
3/2







M∗, (B.13)

and the O(H2/m2
3/2)M∗ term agrees with φ̄ again. In general, as far as H ≪ m3/2 and

Ḣ <∼O(H2), the leading correction is always equal to φ̄. This is because, in Eq. (B.3), first
two terms become of O(H4/m4

3/2)M∗, and hence φ̄ has to be cancelled out by O(H2/m2
3/2)M∗

term in φ. As a result, the deviation from the shifted minimum is always of O(H4/m4
3/2)M∗.

Since φ̄ smoothly goes to 0 as the Universe expands, φ̄ term in φ is harmless. In other
words, in the early stage, φ oscillates around the shifted minimum φ̄, but this minimum
approaches to the true minimum asH → 0. Therefore, we just have to consider the deviation
from φ = φ̄.

In our situation, potential of X changes its behavior at |X| ∼ v; it is logarithmic for
|X|>∼ v, and parabolic potential is relevant once X is trapped in the SUSY breaking mini-
mum. Thus, the solution to Eq. (B.3) changes its behavior at |X| ∼ v. For example, if we
match two cases at L = 1 (though the matching point is quite uncertain), φosc is shifted as

φosc → φosc −
45

2

kHH
4

m4
3/2

M∗. (B.14)

Notice that this shift is not O(H2/m2
3/2)M∗, but O(H4/m4

3/2)M∗. In general, shift of this
order may be possible, especially when the potential changes its behavior. However, shift
cannot be O(H2/m2

3/2)M∗.
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If this shift is larger than the averaged amplitude of φosc, our argument may break down.
Therefore, we require

φosc>∼
H4

m4
3/2

M∗. (B.15)

When |X|>∼ v, φosc is proportional to |X|1/2 while H depends on |X| only logarithmically.
On the other hand, once X is trapped in the SUSY breaking minimum, φosc and H are both
proportional to (|X| − v). Therefore, this constraint becomes most stringent when |X| ∼ v.
Since the expansion rate is much smaller than the gravitino mass (see Eq. (B.7)), above
constraint is very weak. Numerically, this requires v >∼ 100 GeV, even for ζ2 ∼ 1. Of course,
if we adopt smaller value of ζ2, lower bound on v becomes less severe. Therefore, in our case,
this constraint is weak enough, and Hubble-induced term does not change our argument.

C Evolution of nR

In this Appendix, we discuss how the R-number density evolves with time. In particular,
since R-symmetry breaking terms exist in the potential, we need to know the evolution of
nR with them.

We consider a case where X oscillates with a large amplitude. In this case, frequency
of the oscillation is roughly given by ∼ meff , where the effective mass meff is given by (see
Appendix D)

m2
eff =

1

2

(

1

X∗
∂V

∂X
+

1

X

∂V

∂X∗

)

. (C.1)

Notice that meff ≫ H when X is oscillating. Therefore, we consider the time scale m−1
eff ≪

δt ≪ H−1, for which we neglect the change of |X| and H . With the expansion of the
Universe, the amplitude of X decreases as

|X|Rp = const., (C.2)

with p being a positive O(1) constant. (For example, p = 3/2 for parabolic potential, and
p = 3 for logarithmic one.) Therefore, we approximate the motion of X as

X ∼ |X0|e(imeff−pH)t. (C.3)

With the R-symmetry breaking potential

V 6R ∼ −F
2
X

M∗
(X∗ +X) × f(X∗X/M2

∗ ), (C.4)

with f(x) = k0 + k1x+ · · ·, equation for the evolution of nR = i(X∗Ẋ − Ẋ∗X) is given by

ṅR + 3HnR = 2F 2
XIm(X/M∗) × f(|X|2/M2

∗ ). (C.5)
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For the following discussion, it is more convenient to consider the R-number in a comoving
volume. For this quantity, the above equation leads to

d(R3nR)

dt
= R3 × 2F 2

XIm(X/M∗) × f(|X|2/M2
∗ ). (C.6)

We need to solve the above equation to obtain the resultant R-number. For this purpose,
we first take the average of the right-hand side of this equation for the time scale m−1

eff ≪
δt≪ H−1. For this time scale, we approximate |X| and H to be (almost) constant. On the
other hand, the change of ImX is extremely non-adiabatic. In the flat background (i.e., if
H = 0), average of ImX is supposed to vanish since X is in a periodic motion. However, in
the actual situation, H is non-vanishing. By using Eq. (C.3), average of ImX is estimated
as

〈ImX〉 ∼ |X| H
meff

∼ 1

meff

d|X|
dt

, (C.7)

where we related the expansion rate H to d|X|/dt by using Eq. (C.2). In Eq. (C.7) and here-
after, we neglect possible O(1) coefficients since they do not change the following argument.
Combining this equation with Eq. (C.6), we obtain

d(R3nR)

d|X| ∼ R3 × 2F 2
X

M∗

f(|X|2/M2
∗ )

meff
. (C.8)

By using the fact that meff |X|2R3 is a constant of motion, we integrate the above equation
from X = Xi to X = Xf (with Xi > Xf):

R3nR ∼ meff |X|2R3 × 2F 2
X

M∗
×
∑

n

kn

M2n
∗

(

|Xf |2n−1

m2
eff(Xf)

− |Xi|2n−1

m2
eff(Xi)

)

. (C.9)

If the second term in the parenthesis in Eq. (C.9) wins the first term, integration in large
|X| region is more important, and major part of the R-number is generated when X starts
to move. On the other hand, if the first term is dominant, we cannot neglect the R-number
generation in the later stage.

If the potential of X is dominated by the logarithmic piece, meff is proportional to |X|−1.
In this case, R-number generation at large amplitude is more important for n ≥ 0. As a
result, even if there is a linear R-symmetry breaking term in the potential, R-number is
generated when X starts to move, and R-symmetry is conserved with a good accuracy for
a smaller value of |X|. On the other hand, for parabolic potential, meff is a constant. If
the R-number violating potential is dominated by the linear term (n = 0), contribution at
small |X| becomes important. However, in our scenario, we assume that the linear term is
suppressed enough when X starts to move, and that the R-number violating effect starts
with cubic term (n = 1). In this case, R-number asymmetry is again generated when X
starts to move.

In the actual situation, X starts to move with a quadratic potential, and at some stage,
logarithmic piece takes over. With the assumption that the linear term is suppressed enough,
R-number is generated when X starts to move, and afterwards, R-number in the comoving
volume is conserved well.

32



D Scalar Field in the Expanding Universe

In this Appendix, we derive a convenient formula for the evolution of the scalar field ϕ in
periodic motion. For simplicity, we consider the case where the amplitude of the scalar
field is (almost) constant in a time scale of the periodic motion and also the potential for ϕ
depends only on |ϕ|.

From the virial theorem, we obtain

2〈K〉 =

〈

ϕ
∂V

∂ϕ
+ ϕ∗ ∂V

∂ϕ∗

〉

, (D.1)

where K = ϕ̇∗ϕ̇ is the kinetic energy of ϕ, and the bracket represents the time average.
The field equation for ϕ is given by

ϕ̈ + 3Hϕ̇+
∂V

∂ϕ∗ = 0. (D.2)

Multiplying this equation by ϕ̇∗, and using the definition of K, we obtain

K̇ + 6HK +

(

ϕ̇∗ ∂V

∂ϕ∗ + ϕ̇
∂V

∂ϕ

)

= 0. (D.3)

Now, we are at the position to consider the evolution of the scalar field. For this purpose,
we define

S2 = |ϕ|2
(

ϕ
∂V

∂ϕ
+ ϕ∗ ∂V

∂ϕ∗

)

, (D.4)

and consider the evolution of 〈S2〉. By taking the derivative of 〈S2〉 with respect to time,
we obtain

d〈S2〉
dt

=

〈

d|ϕ|2
dt

(

ϕ
∂V

∂ϕ
+ ϕ∗ ∂V

∂ϕ∗

)

+ |ϕ|2 d
dt

(

ϕ
∂V

∂ϕ
+ ϕ∗ ∂V

∂ϕ∗

)〉

=

〈

d|ϕ|2
dt

(

ϕ
∂V

∂ϕ
+ ϕ∗ ∂V

∂ϕ∗

)

+ |ϕ|2K̇
〉

= −12H
〈

|ϕ|2K
〉

= −6H〈S2〉, (D.5)

where we used the fact that the potential V is a function of |ϕ|. By solving the above
equation, we obtain

〈S2〉R6 = const. (D.6)

The scalar field evolves by following this relation.
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For a more intuitive understanding, it is convenient to define the “effective mass” from
the potential V :

m2
eff =

1

2

(

1

ϕ∗
∂V

∂ϕ
+

1

ϕ

∂V

∂ϕ∗

)

. (D.7)

With this effective mass, evolution of the scalar field is given by

meff |ϕ|2R3 = const. (D.8)

For example, in the case of parabolic potential V = m2
ϕ|ϕ|2, meff does not depend on ϕ, and

hence |ϕ| scales as R−3/2, while |ϕ| ∝ R−1 for quartic potential V ∝ |ϕ|4.
Notice that, in the flat space (H = 0),

ϕ = ϕ0e
±imeff t, (D.9)

satisfies the equation of motion of ϕ for any value of ϕ0, if the potential of ϕ depends only
on |ϕ|. (In Eq. (D.9), meff is evaluated at ϕ = ϕ0.) Therefore, meff can be understood as a
frequency of the periodic motion.

Since meff |ϕ|2 is proportional to the volume of the phase space for the periodic motion,
a physical interpretation of Eq. (D.8) is that the phase space volume in a comoving volume
is conserved as the Universe expands.
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